Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Microbiome Res Rep ; 3(1): 9, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455083

RESUMO

Disturbances in the local and peripheral immune systems are closely linked to a wide range of diseases. In the context of neurodegenerative disorders such as Alzheimer's disease (AD), inflammation plays a crucial role, often appearing as a common manifestation despite the variability in the occurrence of other pathophysiological hallmarks. Thus, combating neuroinflammation holds promise in treating complex pathophysiological diseases like AD. Growing evidence suggests the gut microbiome's crucial role in shaping the pathogenesis of AD by influencing inflammatory mediators. Gut dysbiosis can potentially activate neuroinflammatory pathways through bidirectional signaling of the gut-brain axis; however, the precise mechanisms of this complex interweaved network remain largely unclear. In these milieus, this review attempts to summarize the contributing role of gut microbiome-mediated neuroinflammatory signals in AD pathophysiology, while also pondering potential mechanisms through which commensal and pathogenic gut microbes affect neuroinflammation. While certain taxa such as Roseburia and Escherichia have been strongly correlated with AD, other clades such as Bacteroides and Faecalibacterium exhibit variations at the species and strain levels. In order to disentangle the inflammatory aspects of neurodegeneration attributed to the gut microbiome, it is imperative that future mechanistic studies investigate the species/strain-level dependency of commensals, opportunistic, and pathogenic gut microbes that consistently show correlations with AD patients across multiple associative studies.

2.
Gut Microbes ; 16(1): 2323752, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444392

RESUMO

Alzheimer's disease (AD) is a debilitating brain disorder with rapidly mounting prevalence worldwide, yet no proven AD cure has been discovered. Using a multi-omics approach in a transgenic AD mouse model, the current study demonstrated the efficacy of a modified Mediterranean-ketogenic diet (MkD) on AD-related neurocognitive pathophysiology and underlying mechanisms related to the gut-microbiome-brain axis. The findings revealed that MkD induces profound shifts in the gut microbiome community and microbial metabolites. Most notably, MkD promoted growth of the Lactobacillus population, resulting in increased bacteria-derived lactate production. We discovered elevated levels of microbiome- and diet-derived metabolites in the serum as well, signaling their influence on the brain. Importantly, these changes in serum metabolites upregulated specific receptors that have neuroprotective effects and induced alternations in neuroinflammatory-associated pathway profiles in hippocampus. Additionally, these metabolites displayed strong favorable co-regulation relationship with gut-brain integrity and inflammatory markers, as well as neurobehavioral outcomes. The findings underscore the ameliorative effects of MkD on AD-related neurological function and the underlying gut-brain communication via modulation of the gut microbiome-metabolome arrays.


Assuntos
Doença de Alzheimer , Dieta Mediterrânea , Microbioma Gastrointestinal , Microbiota , Animais , Camundongos , Encéfalo , Eixo Encéfalo-Intestino
3.
Artigo em Inglês | MEDLINE | ID: mdl-38480488

RESUMO

BACKGROUND: Previous preclinical studies have demonstrated sex-specific alterations in the gut microbiome following traumatic injury or sepsis alone; however, the impact of host sex on dysbiosis in the setting of postinjury sepsis acutely is unknown. We hypothesized that multicompartmental injury with subsequent pneumonia would result in host sex-specific dysbiosis. METHODS: Male and proestrus female Sprague-Dawley rats (n = 8/group) were subjected to either polytrauma (PT) (lung contusion, hemorrhagic shock, cecectomy, bifemoral pseudofracture), PT plus 2-hours daily restraint stress (PT/RS), PT with postinjury day 1 pseudomonas aeruginosa pneumonia (PT + PNA), PT/RS with pneumonia (PT/RS + PNA), or naive controls. Fecal microbiome was measured on days 0 and 2 using high-throughput 16S rRNA sequencing and QIIME2 bioinformatics analyses. Microbial α-diversity was assessed using Chao1 (number of different unique species) and Shannon (species richness and evenness) indices. ß-diversity was assessed using principal coordinate analysis. Significance was defined as p < 0.05. RESULTS: All groups had drastic declines in the Chao1 (α-diversity) index compared to naïve controls (p < 0.05). PT + PNA and PT/RS + PNA resulted in different ß-diversity arrays compared to uninfected counterparts (PT, PT/RS) (p = 0.001). Postinjury sepsis cohorts showed a loss of commensal bacteria along with emergence of pathogenic bacteria, with blooms of Proteus in PT + PNA and Escherichia-Shigella group in PT/RS + PNA compared to other cohorts. At day 2, PT + PNA resulted in ß-diversity which was unique between males and females (p = 0.004). Microbiome composition in PT + PNA males was dominated by Anaerostipes and Parasuterella whereas females had increased Barnesiella and Oscillibacter. PT/RS males had an abundance of Gastranaerophilales and Muribaculaceae. CONCLUSIONS: Multicompartmental trauma complicated by sepsis significantly diminishes diversity and alters microbial composition towards a severely dysbiotic state early after injury, which varies between males and females. These findings highlight the role of sex in postinjury sepsis and the pathobiome which may influence outcomes after severe trauma and sepsis. LEVEL OF EVIDENCE: Not applicable - basic science.

4.
Microb Pathog ; 189: 106589, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382627

RESUMO

Comprehensive safety assessment of potential probiotic strains is crucial in the selection of risk-free strains for clinical translation. This study aimed to evaluate the biosafety of Limosilactobacillus fermentum NCDC 400, a potential probiotic strain, using oral toxicity tests in a Swiss albino mouse model. Mice were orally gavaged with low (108 CFU/mouse/day) and high (1010 CFU/mouse/day) doses of NCDC 400 for 14 (acute), 28 (subacute), and 90 (subchronic) days to assess behavioral, hematological, biochemical, immunological, and histological effects. The administration of NCDC 400 did not result in any observable adverse effects on general health parameters, including body weight, feed and water intake, and organ indices. Hematological and biochemical parameters, such as glucose, serum enzymes, urea, creatinine, serum minerals, total serum proteins, and lipid profile, remained largely unaffected by the test strain. Notably, NCDC 400 administration led to a significant reduction in harmful intestinal enzymes and improvement in gut health indices, as indicated by fecal pH, lactate, ammonia, and short-chain fatty acids. There were no instances of bacterial translocation of NCDC 400 to blood or extra-intestinal organs. Immune homeostasis was not adversely affected by repeated exposure to NCDC 400 in all three oral toxicity studies. Histopathological examination revealed no strain-related changes in various tissues. Based on these findings, a dose of 1010 CFU/mouse/day was considered as the No Observable Effect Level (NOEL) in healthy mice. In conclusion, this study demonstrates the safe and non-toxic behavior of L. fermentum NCDC 400. The results support and ensure the safety and suitability for clinical trials and eventual translation into clinical practice as potential probiotic.


Assuntos
Limosilactobacillus fermentum , Probióticos , Camundongos , Animais , Modelos Animais de Doenças , Probióticos/metabolismo , Testes de Toxicidade
5.
Front Nutr ; 11: 1322201, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38352704

RESUMO

Introduction: Cognitive decline is a common consequence of aging. Dietary patterns that lack fibers and are high in saturated fats worsen cognitive impairment by triggering pro-inflammatory pathways and metabolic dysfunctions. Emerging evidence highlights the neurocognitive benefits of fiber-rich diets and the crucial role of gut-microbiome-brain signaling. However, the mechanisms of this diet-microbiome-brain regulation remain largely unclear. Methods: Accordingly, we herein investigated the unexplored neuroprotective mechanisms of dietary pulses-derived resistant starch (RS) in improving aging-associated neurocognitive function in an aged (60-weeks old) murine model carrying a human microbiome. Results and discussion: Following 20-weeks dietary regimen which included a western-style diet without (control; CTL) or with 5% w/w fortification with RS from pinto beans (PTB), black-eyed-peas (BEP), lentils (LEN), chickpeas (CKP), or inulin fiber (INU), we find that RS, particularly from LEN, ameliorate the cognitive impairments induced by western diet. Mechanistically, RS-mediated improvements in neurocognitive assessments are attributed to positive remodeling of the gut microbiome-metabolome arrays, which include increased short-chain fatty acids and reduced branched-chain amino acids levels. This microbiome-metabolite-brain signaling cascade represses neuroinflammation, cellular senescence, and serum leptin/insulin levels, while enhancing lipid metabolism through improved hepatic function. Altogether, the data demonstrate the prebiotic effects of RS in improving neurocognitive function via modulating the gut-brain axis.

6.
Nanomaterials (Basel) ; 14(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38334585

RESUMO

The oro-respiratory microbiome is impacted by inhalable exposures such as smoking and has been associated with respiratory health conditions. However, the effect of emerging toxicants, particularly engineered nanoparticles, alone or in co-exposure with smoking, is poorly understood. Here, we investigated the impact of sub-chronic exposure to carbon nanotube (CNT) particles, cigarette smoke extract (CSE), and their combination. The oral, nasal, and lung microbiomes were characterized using 16S rRNA-based metagenomics. The exposures caused the following shifts in lung microbiota: CNT led to a change from Proteobacteria and Bacteroidetes to Firmicutes and Tenericutes; CSE caused a shift from Proteobacteria to Bacteroidetes; and co-exposure (CNT+CSE) had a mixed effect, maintaining higher numbers of Bacteroidetes (due to the CNT effect) and Tenericutes (due to the CSE effect) compared to the control group. Oral microbiome analysis revealed an abundance of the following genera: Acinetobacter (CNT), Staphylococcus, Aggregatibacter, Allobaculum, and Streptococcus (CSE), and Alkalibacterium (CNT+CSE). These proinflammatory microbial shifts correlated with changes in the relative expression of lung mucosal homeostasis/defense proteins, viz., aquaporin 1 (AQP-1), surfactant protein A (SP-A), mucin 5b (MUC5B), and IgA. Microbiota depletion reversed these perturbations, albeit to a varying extent, confirming the modulatory role of oro-respiratory dysbiosis in lung mucosal toxicity. This is the first demonstration of specific oro-respiratory microbiome constituents as potential modifiers of toxicant effects in exposed lungs.

7.
Crit Care ; 28(1): 18, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212826

RESUMO

BACKGROUND: Sepsis and trauma are known to disrupt gut bacterial microbiome communities, but the impacts and perturbations in the fungal (mycobiome) community after severe infection or injury, particularly in patients experiencing chronic critical illness (CCI), remain unstudied. METHODS: We assess persistence of the gut mycobiome perturbation (dysbiosis) in patients experiencing CCI following sepsis or trauma for up to two-to-three weeks after intensive care unit hospitalization. RESULTS: We show that the dysbiotic mycobiome arrays shift toward a pathobiome state, which is more susceptible to infection, in CCI patients compared to age-matched healthy subjects. The fungal community in CCI patients is largely dominated by Candida spp; while, the commensal fungal species are depleted. Additionally, these myco-pathobiome arrays correlate with alterations in micro-ecological niche involving specific gut bacteria and gut-blood metabolites. CONCLUSIONS: The findings reveal the persistence of mycobiome dysbiosis in both sepsis and trauma settings, even up to two weeks post-sepsis and trauma, highlighting the need to assess and address the increased risk of fungal infections in CCI patients.


Assuntos
Microbioma Gastrointestinal , Micobioma , Sepse , Humanos , Disbiose/complicações , Disbiose/microbiologia , Candida , Bactérias , Sepse/complicações , Fungos
8.
Cell Rep Med ; 5(1): 101363, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38232698

RESUMO

Early time-restricted eating (eTRE) improves aspects of cardiometabolic health. Although the circadian system appears to regulate nutrient absorption, little is known about the effects of eTRE on intestinal absorption. In this randomized crossover trial, 16 healthy adults follow a controlled, weight maintenance diet for 9 days, consuming all calories between 0800 and 1400 (eTRE schedule) or 0800 and 2000 (control schedule). We measure the energy content of the diet, stool, and urine with bomb calorimetry and calculate intestinal energy absorption. The eTRE schedule is more effective than the control eating schedule for improving markers of cardiometabolic health, including 24-h mean glucose concentrations and glycemic variability, assessed as the mean amplitude of glycemic excursions. However, eTRE has no effect on intestinal energy and macronutrient absorption, gastrointestinal transit time, colonic hydrogen gas production, or stool microbial composition, suggesting eTRE does not impact gastrointestinal function. This trial is registered (ClinicalTrials.gov: NCT04877262).


Assuntos
Doenças Cardiovasculares , Dieta , Adulto , Humanos , Ingestão de Energia , Absorção Intestinal , Nutrientes
9.
Biochem Biophys Res Commun ; 682: 1-20, 2023 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-37788525

RESUMO

Metabolic disorders are increasingly prevalent worldwide, leading to high rates of morbidity and mortality. The variety of metabolic illnesses can be addressed through personalized medicine. The goal of personalized medicine is to give doctors the ability to anticipate the best course of treatment for patients with metabolic problems. By analyzing a patient's metabolomic, proteomic, genetic profile, and clinical data, physicians can identify relevant diagnostic, and predictive biomarkers and develop treatment plans and therapy for acute and chronic metabolic diseases. To achieve this goal, real-time modeling of clinical data and multiple omics is essential to pinpoint underlying biological mechanisms, risk factors, and possibly useful data to promote early diagnosis and prevention of complex diseases. Incorporating cutting-edge technologies like artificial intelligence and machine learning is crucial for consolidating diverse forms of data, examining multiple variables, establishing databases of clinical indicators to aid decision-making, and formulating ethical protocols to address concerns. This review article aims to explore the potential of personalized medicine utilizing omics approaches for the treatment of metabolic disorders. It focuses on the recent advancements in genomics, epigenomics, proteomics, metabolomics, and nutrigenomics, emphasizing their role in revolutionizing personalized medicine.


Assuntos
Doenças Metabólicas , Proteômica , Humanos , Proteômica/métodos , Inteligência Artificial , Genômica/métodos , Medicina de Precisão/métodos , Metabolômica/métodos , Doenças Metabólicas/genética , Doenças Metabólicas/terapia
10.
Surgery ; 174(6): 1453-1462, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37833155

RESUMO

BACKGROUND: Preclinical studies of the gut microbiome after severe traumatic injury have demonstrated severe dysbiosis in males, with sex-specific microbial differences up to 2 days after injury. However, the impact of host sex on injury-driven dysbiosis over time remains unknown. We hypothesized that sex-specific differences in intestinal microbiome diversity and composition after traumatic injury with and without stress would persist after 7 days. METHODS: Male and proestrus female Sprague-Dawley rats (n = 8/group) were subjected to either polytrauma (lung contusion, hemorrhagic shock, cecectomy, bifemoral pseudofractures), polytrauma plus chronic restraint stress, or naïve controls. The fecal microbiome was measured on days 0, 3, and 7 using 16S rRNA sequencing and Quantitative Insights into Microbial Ecology bioinformatics analyses. Microbial alpha-diversity (Chao1 and Shannon indices) and beta-diversity were assessed. Analyses were performed in GraphPad and "R," with significance defined as P < .05. RESULTS: Polytrauma and polytrauma plus chronic restraint stress reduced alpha-diversity (Chao1, Shannon) within 3 days postinjury, which persisted up to day 7 in both sexes; polytrauma and polytrauma plus chronic restraint stress females had significantly decreased Chao1 compared to male counterparts at day 7 (P = .02). At day 7, the microbiome composition in polytrauma females had higher proportion of Mucispirillum, whereas polytrauma plus chronic restraint stress males demonstrated elevated abundance of Ruminococcus and Akkermansia. CONCLUSION: Multicompartmental trauma induces intestinal dysbiosis that is sex-specific with persistence of decreased diversity and unique "pathobiome" signatures in females after 1 week. These findings underline sex as an important biological variable that may influence variable host-specific responses and outcomes after severe trauma and critical illness. This underscores the need to consider precision medicine strategies to ameliorate these outcomes.


Assuntos
Disbiose , Traumatismo Múltiplo , Feminino , Masculino , Ratos , Animais , Ratos Sprague-Dawley , Disbiose/etiologia , RNA Ribossômico 16S , Biologia Computacional
11.
Medicina (Kaunas) ; 59(9)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37763665

RESUMO

The skeletal system is an extraordinary structure that serves multiple purposes within the body, including providing support, facilitating movement, and safeguarding vital organs. Moreover, it acts as a reservoir for essential minerals crucial for overall bodily function. The intricate interplay of bone cells plays a critical role in maintaining bone homeostasis, ensuring a delicate balance. However, various factors, both intrinsic and extrinsic, can disrupt this vital physiological process. These factors encompass genetics, aging, dietary and lifestyle choices, the gut microbiome, environmental toxins, and more. They can interfere with bone health through several mechanisms, such as hormonal imbalances, disruptions in bone turnover, direct toxicity to osteoblasts, increased osteoclast activity, immune system aging, impaired inflammatory responses, and disturbances in the gut-bone axis. As a consequence, these disturbances can give rise to a range of bone disorders. The regulation of bone's physiological functions involves an intricate network of continuous processes known as bone remodeling, which is influenced by various intrinsic and extrinsic factors within the organism. However, our understanding of the precise cellular and molecular mechanisms governing the complex interactions between environmental factors and the host elements that affect bone health is still in its nascent stages. In light of this, this comprehensive review aims to explore emerging evidence surrounding bone homeostasis, potential risk factors influencing it, and prospective therapeutic interventions for future management of bone-related disorders.


Assuntos
Densidade Óssea , Microbioma Gastrointestinal , Humanos , Osteoclastos , Envelhecimento , Homeostase
12.
Microorganisms ; 11(8)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37630549

RESUMO

The intestinal microbiome plays a critical role in host immune function and homeostasis. Patients suffering from-as well as models representing-multiple traumatic injuries, isolated organ system trauma, and various severities of traumatic injury have been studied as an area of interest in the dysregulation of immune function and systemic inflammation which occur after trauma. These studies also demonstrate changes in gut microbiome diversity and even microbial composition, with a transition to a pathobiome state. In addition, sex has been identified as a biological variable influencing alterations in the microbiome after trauma. Therapeutics such as fecal transplantation have been utilized to ameliorate not only these microbiome changes but may also play a role in recovery postinjury. This review summarizes the alterations in the gut microbiome that occur postinjury, either in isolated injury or multiple injuries, along with proposed mechanisms for these changes and future directions for the field.

13.
Front Mol Biosci ; 10: 1182643, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457834

RESUMO

Emerging evidence reveals the fundamental role of the gut microbiome in human health. Among various factors regulating our gut microbiome, diet is one of the most indispensable and prominent one. Inulin is one of the most widely-studied dietary fiber for its beneficial prebiotic effects by positively modulating the gut microbiome and microbial metabolites. Recent research underscores sexual dimorphism and sex-specific disparities in microbiome and also diet-microbiome interactions. However, whether and how the prebiotic effects of dietary fiber differ among sexes remain underexplored. To this end, we herein examine sex-specific differences in the prebiotic effects of inulin on gut microbiome and metabolome in a humanized murine model of aging i.e., aged mice carrying human fecal microbiota. The findings demonstrate that inulin exerts prebiotic effects, but in a sex-dependent manner. Overall, inulin increases the proportion of Bacteroides, Blautia, and glycine, while decreasing Eggerthella, Lactococcus, Streptococcus, trimethylamine, 3-hydroxyisobutyrate, leucine and methionine in both sexes. However, we note sex-specific effects of inulin including suppression of f_Enteroccaceae:_, Odoribacter, bile acids, malonate, thymine, valine, acetoin, and ethanol while promotion of Dubosiella, pyruvate, and glycine in males. Whereas, suppression of Faecalibaculum, Lachnoclostridium, Schaedlerella, phenylalanine and enhancement of Parasutterella, Phocaeicola, f_Lachnospiraceae;_, Barnesiella, Butyricimonas, glycine, propionate, acetate and glutamate are observed in females. Altogether, the study reveals that prebiotic mechanisms of dietary fiber vary in a sex-dependent manner, underscoring the importance of including both sexes in preclinical/clinical studies to comprehend the mechanisms and functional aspects of dietary interventions for effective extrapolation and translation in precision nutrition milieus.

14.
Nutrients ; 15(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37513622

RESUMO

Alzheimer's disease (AD) is a growing concern for the aging population worldwide. With no current cure or reliable treatments available for AD, prevention is an important and growing area of research. A range of lifestyle and dietary patterns have been studied to identify the most effective preventive lifestyle changes against AD and related dementia (ADRD) pathology. Of these, the most studied dietary patterns are the Mediterranean, DASH, MIND, ketogenic, and modified Mediterranean-ketogenic diets. However, there are discrepancies in the reported benefits among studies examining these dietary patterns. We herein compile a narrative/literature review of existing clinical evidence on the association of these patterns with ADRD symptomology and contemplate their preventive/ameliorative effects on ADRD neuropathology in various clinical milieus. By and large, plant-based dietary patterns have been found to be relatively consistently and positively correlated with preventing and reducing the odds of ADRD. These impacts stem not only from the direct impact of specific dietary components within these patterns on the brain but also from indirect effects through decreasing the deleterious effects of ADRD risk factors, such as diabetes, obesity, and cardiovascular diseases. Importantly, other psychosocial factors influence dietary intake, such as the social connection, which may directly influence diet and lifestyle, thereby also impacting ADRD risk. To this end, prospective research on ADRD should include a holistic approach, including psychosocial considerations.


Assuntos
Doença de Alzheimer , Dieta , Idoso , Envelhecimento , Doenças Neurodegenerativas , Estado Nutricional , Humanos
15.
J Exp Med ; 220(10)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37367944

RESUMO

Th17 cells play a critical role in both tissue homeostasis and inflammation during clearance of infections as well as autoimmune and inflammatory disorders. Despite numerous efforts to distinguish the homeostatic and inflammatory roles of Th17 cells, the mechanism underlying the divergent functions of inflammatory Th17 cells remains poorly understood. In this study, we demonstrate that the inflammatory Th17 cells involved in autoimmune colitis and those activated during colitogenic infection are distinguishable populations characterized by their differential responses to the pharmacological molecule, clofazimine (CLF). Unlike existing Th17 inhibitors, CLF selectively inhibits proautoimmune Th17 cells while preserving the functional state of infection-elicited Th17 cells partially by reducing the enzyme ALDH1L2. Overall, our study identifies two distinct subsets within the inflammatory Th17 compartment with distinct regulatory mechanisms. Furthermore, we highlight the feasibility to develop disease-promoting Th17 selective inhibitor for treating autoimmune diseases.


Assuntos
Doenças Autoimunes , Colite , Humanos , Autoimunidade , Células Th17 , Inflamação
16.
Sci Rep ; 13(1): 10566, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386089

RESUMO

Emerging evidence suggests that plant-based fiber-rich diets improve ageing-associated health by fostering a healthier gut microbiome and microbial metabolites. However, such effects and mechanisms of resistant starches from dietary pulses remain underexplored. Herein, we examine the prebiotic effects of dietary pulses-derived resistant starch (RS) on gut metabolome in older (60-week old) mice carrying a human microbiome. Gut metabolome and its association with microbiome are examined after 20-weeks feeding of a western-style diet (control; CTL) fortified (5% w/w) with RS from pinto beans (PTB), black-eyed-peas (BEP), lentils (LEN), chickpeas (CKP), or inulin (INU; reference control). NMR spectroscopy-based untargeted metabolomic analysis yield differential abundance linking phenotypic differences in specific metabolites among different RS groups. LEN and CKP increase butyrate, while INU promotes propionate. Conversely, bile acids and cholesterol are reduced in prebiotic groups along with suppressed choline-to-trimethylamine conversion by LEN and CKP, whereas amino acid metabolism is positively altered. Multi-omics microbiome-metabolome interactions reveal an association of beneficial metabolites with the Lactobacilli group, Bacteroides, Dubosiella, Parasutterella, and Parabacteroides, while harmful metabolites correlate with Butyricimonas, Faecalibaculum, Colidextribacter, Enterococcus, Akkermansia, Odoribacter, and Bilophila. These findings demonstrate the functional effects of pulses-derived RS on gut microbial metabolism and their beneficial physiologic responses in an aged host.


Assuntos
Lens (Planta) , Microbiota , Humanos , Animais , Camundongos , Idoso , Amido Resistente , Modelos Animais de Doenças , Metaboloma , Dieta Ocidental , Envelhecimento , Bacteroidetes
17.
Clin Sci (Lond) ; 137(12): 963-978, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37337946

RESUMO

Sexual dimorphisms exist in multiple domains, from learning and memory to neurocognitive disease, and even in the immune system. Male sex has been associated with increased susceptibility to infection, as well as increased risk of adverse outcomes. Sepsis remains a major source of morbidity and mortality globally, and over half of septic patients admitted to intensive care are believed to suffer some degree of sepsis-associated encephalopathy (SAE). In the short term, SAE is associated with an increased risk of in-hospital mortality, and in the long term, has the potential for significant impairment of cognition, memory, and acceleration of neurocognitive disease. Despite increasing information regarding sexual dimorphism in neurologic and immunologic systems, research into these dimorphisms in sepsis-associated encephalopathy remains critically understudied. In this narrative review, we discuss how sex has been associated with brain morphology, chemistry, and disease, sexual dimorphism in immunity, and existing research into the effects of sex on SAE.


Assuntos
Encefalopatia Associada a Sepse , Sepse , Humanos , Masculino , Encefalopatia Associada a Sepse/complicações , Caracteres Sexuais , Sepse/complicações , Encéfalo
18.
Food Funct ; 14(10): 4931-4947, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37158475

RESUMO

The prevalence of iron deficiency anaemia is a significant issue worldwide, affecting individuals of all ages and often associated with inadequate iron bioavailability. Despite the use of ferrous salt supplements to address anaemia, their limited bioaccessibility and bioavailability in human GIT and adverse impact on food properties remain significant challenges. Hence, this study aims to explore the iron chelation mechanism of an exopolysaccharide EPSKar1 to enhance iron bioaccessibility, bioavailability, and anti-anaemic effects using cell culture and an anaemic rat model. EPSKar1 was extracted from Lacticaseibacillus rhamnosus Kar1 and complexed with FeSO4 to form "EPSKar1-iron". This novel complex, besides being bio-accessible after in vitro gastric digestion, demonstrated 61.27 ± 1.96% iron bioavailability to the Caco-2 cells. In line with these in vitro findings, intragastric administration of the EPSKar1-iron complex to anaemic Wistar rats at 25 and 50 mg per kg body weight significantly restored blood haemoglobin levels and re-established the morphological features of red blood cells. Furthermore, the apparent digestibility co-efficient and iron uptake improved significantly without adversely affecting the serum biochemical parameters in these anaemic rats. The levels of iron-transport proteins including serum transferrin and ferritin in tissue and plasma have increased remarkably upon oral administration of EPSKar1-iron at a higher dose of 50 mg per kg body weight. Oral supplementation of EPSKar1-iron did not foster adverse histological changes in the liver, kidneys, and spleen. In fact, the treatment with the EPSKar1-iron complex had a restitution effect on the tissue architecture, thereby ameliorating the tissue lesions. These findings collectively indicate that the EPSKar1-iron complex shows nutraceutical potential in enhancing the bioavailability of iron and could be a promising approach to tackle iron deficiency anaemia.


Assuntos
Anemia Ferropriva , Anemia , Humanos , Ratos , Animais , Ferro/metabolismo , Anemia Ferropriva/tratamento farmacológico , Anemia Ferropriva/metabolismo , Ratos Wistar , Disponibilidade Biológica , Células CACO-2 , Anemia/tratamento farmacológico , Hemoglobinas/metabolismo
19.
Life Sci ; 322: 121685, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37044173

RESUMO

The prominent role of gut in regulating the physiology of different organs in a human body is increasingly acknowledged, to which the bidirectional communication between gut and liver is no exception. Liver health is modulated via different key components of gut-liver axis. The gut-derived products mainly generated from dietary components, microbial metabolites, toxins, or other antigens are sensed and transported to the liver through portal vein to which liver responds by secreting bile acids and antibodies. Therefore, maintaining a healthy gut microbiome can promote homeostasis of this gut-liver axis by regulating the intestinal barrier function and reducing the antigenic molecules. Conversely, liver secretions also regulate the gut microbiome composition. Disturbed homeostasis allows luminal antigens to reach liver leading to impaired liver functioning and instigating liver disorders. The perturbations in gut microbiome, permeability, and bile acid pool have been associated with several liver disorders, although precise mechanisms remain largely unresolved. Herein, we discuss functional fingerprints of a healthy gut-liver axis while contemplating mechanistic understanding of pathophysiology of liver diseases and plausible role of gut dysbiosis in different diseased states of liver. Further, novel therapeutic approaches to prevent the severity of liver disorders are discussed in this review.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Humanos , Microbioma Gastrointestinal/fisiologia , Fígado , Hepatopatia Gordurosa não Alcoólica/terapia , Homeostase , Disbiose , Ácidos e Sais Biliares
20.
Curr Res Food Sci ; 6: 100478, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36935848

RESUMO

Iron is a micronutrient essential for human health and physiology. Iron-deficiency anemia, the most common form of anemia, may occur from an iron homeostasis imbalance. Iron fortification is a promising and most sustainable and affordable solution to tackle the global prevalence of this anemia. Herein, we investigate physicochemical, rheological and stability characteristics of a novel exopolysaccharide 'EPSKar1' (derived from Lacticaseibacillus rhamnosus strain Kar1) and its iron complex 'EPSKar1-Fe (II)'. Our findings demonstrate that EPSKar1 is a high molecular-weight (7.8 × 105 Da) branched-chain heteropolysaccharide composed of galactose, N-acetylglucosamine, and mannose in a molar ratio of 8:4:1, respectively, and exhibits strong emulsifying and water-holding capacities. We find that EPSKar1 forms strong complexes with Fe, wherein the interactions between EPSKar1-Fe (II) complexes are mediated by sulfate, carboxyl, and hydroxyl groups. The rheological analyses reveal that the EPSKar1 and EPSKar1-Fe (II) complexes exhibited shear thickening and thinning properties in skim milk and water, respectively; however, the suspension of EPSKar1 in skim milk is viscoelastic with predominantly elastic response (G'>G" and tan Î´ < 1). In comparison, EPSKar1-Fe (II) complex exhibits remarkable stability under various processing conditions, highlighting its usefulness for the development of fortified dairy products. Together, these findings underpin considerable prospects of EPSKar1-Fe (II) complex as a novel iron-fortifier possessing multifarious rheological benefits for food applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...